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0. INTRODUCTION

This paper at tempts  a systematic  study of sphe r i ca l l y i n v a r i a n t  pro-

cesses (SIP ’ s ) ,  i . e . ,  processes whose finite dimensional distribut i ons aro

mixtures of Gaussian distributions. Section 1 contains  the basic propert ies

of SIP’s, including their representation in terms of Gaussian processes ,

which are used throughout . The structure of the nonlinear space of a second

order SIP is considered in Section 2. Section 3 solves the prob lem of

discriminating between two second order SIP’s, and Section 4 the nonlinear

estimation problem for second order SIP’s and in particular for Gaussian

processes.

Our basic notation and terminology is as follows. X = (X~ , tcl) is

a stochastic process defined on a probability space (~2,8,P). T is an arbitrary

index set; sometimes it is taken to be a real l ine int erval , but since this is

• 
clear from the context it is not emphasized . 5 is usually taken to be 8(X),

the a-field generated by the random variables of the process X , or ~(X), the

completion of 8(X) with respect to P. For each w€Q , X (w) is the corresponding

sample path of the process X , which is an element of m
T 

the space of all

functions defined on T. X induces a probability measure p = P.X 1 on

(l~
’
B(mT)) where S(IRT) is the c-field generated by the cylinder sets of m l

X is a coordinate process if (~2 8 P )  = (m
T 8(m 1) p) and X

~
(w) = w(t). The

nonlinear space of X , L2(X) = L2(~ ,B(X),P), is the set of all 8(X)-measurable

random variables with finite second moment which are called (nonlinear) L2-

functionals of X . X is a second order process if EX~ < for all t€T . The

linear space of a second order process X , H(X), is the closed subspace of

L2(X) spanned by X~ , tEl , and its elements are called linear L2-functionals of

X .

i-~” ~~~~~~~~~~~~ 
i • ~~~~~~~i~_~~~



r ~~~~~~~~~~~~~~~~~~~

1. SPIII~R1CALLY INVA RIANT I’R0CI~SSES (SIP’ s)

It is wel l known that all mean square estimation problems on Gaussian

processes have linea r solut ions and that Gaussian processes are closed under

linear operations. Vershik (1964) showed that these two properties do not

uniquely characterize the Gaussian processes. They do , however , characterize

the class of SIP’s.

Let X = (Xt , tEl) be a second order process with mean m(t) and covariance

function r(t,s). Then X is said to he an SIP if all r.v. ’s in U (X-m) having

the same variance have the same distribution . Also , X is called degenerate

if H(X—m) is finite dimensional. Since the nonlinear structure of a non-

degenerate and a degenerate SIP are considerably different , we will restrict

our present investigation to the nondegenerate case; the finite dimensional

case will be treated elsewhere . A SIP X is a mixture of Gaussian processes.

It can be determined by its mean m(t), a covariance function R(t ,s), arid

a probability distribution F(a) on IR ;  the characteristic function of

X~ ,. . .,X~ (t1,. .. ,tkfT) is given byI k• a
- -

~~

(1.1) fe ~ dF( a)

(Vershik (1964) and Nagornyi (1970)). In order to avoid the trivial case

where X is a constant  process , we w i l l  assume throughout that  F ( O ~ ) < 1.

Such an SIP determined by m , R arid F w i l l  he denoted , in short , by SIP( m , R; F ) .

A p robabi l i ty  measure p on the samp l e space (m T , 8(ffi T ))  is sa id to he a

spherically invariant measure~ SIM) if i t  i s  induced by a S IP , or , equiv-

ale n tly , if the coordinate process on (ffi t ,5(fl~T),1J ) is a SIP. A SIN

induced by a SIP (m. R ,F) will he denoted by SIM(m,R;F). When F puts all

• it s mass at the point I the SIP (m , R;F) and the SIN (in ,R;F) become

%~~~~~~~~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~-- - -  - -



Ga u ssi an  with mean Iii and covar iance  R ; we w i l l  use the n o t a t i o n  GP (m , R) and

GM( m , R) respect ivel y.

LEMMA 1.1 Let p be an STM (m , R :F ) and for each a ~
- 0 let p be a

GM( m ,ct R) . Then

(1.2) p (E) = fU a (E) dF( a)  for a l l  E E8 ( IR T ) .

Furthermore , for any measurable function 0 on (IR T
,S(IR T),p) which is non-

negative or integrable we have

(1.3) E0 = fE OdF (a)

where E0 = fedp and E 0  = fodp .

Proof: For each fixed cy linder set E , Ua (E) is a measurable funct ion of a;

and the family of sets E such that Pa
(E) is a-measurable is a c-field. There-

fore, PaCE) is a-measurable for every EEB (ll~
T). Thus fpa(E)dF(a) is well-

defined and is easily checked to be a probability measure. The characteristic

functior~ of its finite dimensional distributions are given by (1.1), and since

they uniquely determine a probability measure on (IRT,5(IR T
)), we have (1.2).

(1.3) holds for 0 = l~ (Ec8(IR T)) by (1.2). Hence it holds for simple

function s 0, and thus for 0 nonnegative by considering a sequence of simple

functions increasing to 0. For 0 integrable , consider the positive and nega-

tive parts separately.

It follows from Lemma 1.1 that if X is a coordinate SIP (m ,R;F) then ,

under each p 1~ , X is a GP(m ,cxR) . The following theorem generalizes this fact.

THEOREM 1.2. Let X be a SIP (m ,R; l ) on (~ ,8(X),P). Then for each

~ 0 there exists a probability measure P on (~ ,5 ( X ) )  such tha t = P X ’

i~; a GM(m ,aR ) .  Hence under each 
~a’ X is a GP( m ,ciR) and the correspondinq

_ _ _ _ _ _ _
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formulae (1.2) and (1.3) hold.

P roof: Let p be the SIN induced on ( IR 5 ( Q~ ) by X and let  p1 , a 0,

be GM(m , R) as i n Lemm a 1.1.  Let C ( f l ~
1 ) he the f i e l d  of a l l  c y l i n d e r  sets

in B (R T ) and C(X)  = X l .C( I R T ) c 8 ( X ) .  For each D c C ( X ) ,  d e f i n e  =

p ( E ) if 0 = X~~~( E ) .  We c l a i m  that  is wel l  defined . I t  is not hard to

see (by look ing  at their characteristic functions) that when restricted to a

finite dimensiona l space 
~a is absolute ly  continuous w i t h  respect to ~~~. Fims

if 0 X~~ (E ) = X~~(E’), E ,E ’ cC(IR T), then i~(E) P(I)) = p (E
1
) and hence

lJa (E) = Ua(E ’ )
~ 

Consequently, 
~c 

is a probability measure on the field C(X)

and hence it has a unique extension to a probability measure on 6(X). Now

it follows that = P~ •X
’ since the two measures coincide on C(IRT). 0

(1.2) in Theorem 1.2 was proved by Gualtierotti (1974) for P an SIN on

a separable hu bert space. Note that since X is of second order , it follows

from

~~ > EX~ = f E X ~dF (a )  = f [m ~ (t )  + aR(t , t ) ] dF ( a)

that
a1 

= fadF(a) <

THEOREM 1.3. Lot X be a SIP (O ,R;F) and {~~} a sequence in 1-1(X). Then

there exist versions of the ~~‘s such that under each P the r.v. ’s ~~ } are
jointl y Gaussian wi th zero mean and covariance

( 1 . 4) E~~~~ = = 
‘

and, moreover , for any measurable function g on (IR , 8 ( I R ) )  we have

(1.5) E~g(~ 1 J~~t ...) = E1
g(/~ 

~~~~~~ 
~~~~

whenever one of these expectations exists.

.,.
— •  ? % ~~‘~

4 -
~~ 

-

.~ ~~~~~
,-• •• - ‘~~~~ -~~~~~~~~~~~~~~~~~~~~~~~ L —-~~ -.- — -- .. ---, --- -- . . --~----—-- -~-•--
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Proof: In view of Theorem 1. 2 and the fact  tha t  every measurab le  f u n c t i o n

0(w) on (~l ,8(X)) is of the form f(X(w)) for some measurable function f on

(mT,S(m
T
), it suffices to prove the assertion for X a coordinate process.

For each r.v. ~~(x), x€m
T
, there is a sequence ~~~~ of finite linear

combinations of {ft(X)=X(t),tET} such that ~~(x) 
= u r n .  ~~~ ( X )  a.s. [p].

Let C~ = (xE R T: ~~~~~~ 
-
~ 

• as i -
~ ~} and let C = f l C

n~ 
C is clearly a

measurable linear space having p probability 1. Now take each 
~n 

to he

lim. 2Nx) for xcC and 0 for x~C. Since 1 = p ( C)  = fi.i (C)dF(ct) by Lemma

1.1 , and F(0~) < 1 , there is a0 
> 0 such that 

~a 
(C) = 1. Let Y be a G(0,R)

0
on some probability space (Q0,80,Q). Then since C is a linear space we have

for all a � 0

Ua(C) = Q(V& Y€C) = Q( V ~~ YcC) = 

~a 
(C) = 1

0

Thus 
~ 

= lim. 2~(n) a.e. ‘~a
1’ for all a � 0. Since under each

{2~~~ ,n�l ,i�1} is a Gaussian family, it follows that ~~ } are jointly

Gaussian under each

To show (1.4) we recall that for a Gaussian family a.s. convergence is

equivalent to mean square convergence. Thus

E ~ = lim E
a n m  . -

1 , 1

= u r n  C~E 1
Q~~~~~

m) 
=

and hence ~~~~ = f E~~~~ dF( a) = a
1
E
1~~1~~ 

= 
~~~ ~~~~~~

It is easy to see that {~~} under has t h e same probability law as

~~~~~~~ 

~~ 
under jj

~~~
. (1.5) is now evident . [1

We mow introduce a r.v. A which will play a centra l role in the repre-

sentat ion of a SIP as well as in the study of its nonlinear space.
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Pick an orthogona l sequence {F
~n
} from 11(X) with = a1 . Then

by Theorem 1.3 we may assume that under each 
~a’ 

{~~} is a sequence of

independent zero mean Gaussian r.v. ’s with Ea~~ 
= a. Define

A = ~~—~~~~~

By the law of large numbers , we have liin A = a a.s. [ P 1 .  Let C* =

{wtO : A (w) -‘ •J - . Then

P(C*) = j P a *)dF( cz) = fdF(a) = 1

Thus An converges a.s. [P]. Let

Ilim A (w) if w C ~
(1.6) A(w) =1

if w~C*

Then

(1.7) A = a a.s. [P]

and the distribution function of A is F since

( 1.8) P(A�a) = fPa(A�a)dF(a) = fl [O a] (a)dF(a) = F(a).

If we put % = {w€cl : A (w) = a} then 
~a~

0a~ 
= 1 , and thus the probability

measures P , a � 0, are mutually singular (which is of course well known).

We now arrive at the ma in theorem of this section .

,
1 THEOREM 1.4. A nondegenerate second order process X on (cl ,5(X),P) is a

SIP (0;R;F) if  and only if it has the representation

(1.9) X~ = A 1RY~ a.s. for all t€T

where A is a nonnegative r . v .  with distribution function F and , conditioned

on A > 0 , Y is a nondegenerate GP( 0,R) independent of  A .

- .- ‘ .-
-. ,. =- .

S 
~~~ - -- 

,

----- ~~---- — ___ —--—-- -~~~~~~~~~~~
---

~~
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Proof: The “if” part is clear. To show the “onl y if” part , let A be the

r.v. defined by (1.6) and let

i f A > 0

(1.10) = 
A

0 i f A = 0 .

Then it follows from Theorem 1.2 and (1.7) that P(X
~ 

= A”2Y
~
) =

fP (X
~
=a
~~

2Y
~~
dF(ci)= 1; and that Y is a GP(0,R) under each for a > 0

and thus also under P(.) = (1-F(O~))
1
f Pa(•)dF(ct), which is just the

(0 , x )  
T

conditiona l probability of P given A > 0. Now for E)€B(IR) and EEB (J~ )

we have

P(AcD, YEE) = 
+ 

f l
D Pa d

~~~l-F(0 ) (0,co)

= 
÷
— P(A D) • P(YcE)

l-F(0 )

= P(A€D) V(YEE)

since Pa(YEE) 
= P(Y€E) for a > 0. Hence A and Y are conditionally independent

g i v e n A > 0 .  0

The representation (1.9) of a SIP was first noted by Besson (1974) who ,

without constructing the r.v. A , showed its existence by employing a result

in Bretagnolle et. al (1966) concerning symmetrically dependent (exchangeable)

r.v. ’s. Our approach seems more elementary and direct , and also yields

further results.

(1.9) reveals that a SIP is merely a conditional Gaussian process.

(More spec i fically, given A = a, the SIP (0,R;F) is a GP (0,aR).) By

requiring F(0~) = 0, Theorem 1.4 may he stated in a more appealing way .

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

.,

~

,-. 

~~~~~~
~‘
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THEOREM 1.5. A nondeqenerate second order process X on (0 , 8(X) , P)

is a SIP (0,R ; F )  satisfying F ( 0~) = 0 if and only if it has tiu repro-

senta tion

X~ = A~
’2Y~ a.s., t€T

where Y is a nondeqenerate GP (O,R) and A is a positive r.v. independent

of Y having distribution function F.

Theorem 1.4 enables one to read off many properties of SIP’ s immediatel y.

For instance a SIP (0,R;F) X is of order p > 0, i.e., E
~
X
~
!P < ~~~, if and

only if EA~’2 = fa~
”2dF( a)  < ~~~ . If X is of order 2, then continuity in

probability of X is equivalent to mean square continuity [Besson (1974)1.

All the usua l (local and global) analytic properties of the sample functions

of X depend only on R and not on F , while properties of maxima and crossings

depend on both R and F. Kallianpur ’s zero-one law and Slepian ’s lemma

take the following form for SIP’s. (The proofs are straightforward and

are thus omitted.)

COROLLAR Y 1.6. If p is an SIM (0,R;F) and L a 8(1R T)~ measurable linear

subspace of  ffi T then p( L) = F(0~) or 1. Furthermore , p( L ) = 1 if and onl y

if for some a > 0, L is 8a(]R
T
)_measurable and p (L) = 1.

In Corollary 1.6 are as in Lemma 1.1 and 6(1~
T
), resp . 8a(1R

T
)
~

denotes the completion of 8(IRT) with respect to p, resp . 
~~

COROLLARY 1.7. If X~ is a separable SIP (0,R
~
;F
~
), i = 1 , 2 , and if

R 1 (t,t) = R ,(t,t) , R 1 (t ,s) � R2(t ,s) for all t ,scT

p
1

(0
f
) = F2(0~) , F1 (a) � F2(a) for all a > 0

then for all a,

E-: ~ 
•
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - -~‘  

‘ .,‘,- . 
~~~~~~ 

—-~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ — — - - .—---.~~--.----- .-~~~~ _ —  —-— — —----~~~~ — — ----— —--—  —_-.--— - —~- .----— -
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Pisup X 1 (t) < u} 
� P{sup X ,(t) < u}.

teT tcT

We now give an interesting example of a samp le continuous martingal e

whose famil y of a-fields is not continuous. Let W = {W
~
, 0~ t<~ } he a

1/’Wiener process , and let X = A ~W where A is a nonnegative r.v. independent

of W and whose a-field is nontrivial. It is easil y checked that X is a

sample continuous rnartingale . Let = 8(X
~
, 0 - s~ t ) ,  0~ t<~~. We will show

that is not continuous at ~ = 0. Fix t > 0 and consider the quadratic

varia t ion M(t) of X over the interval [0 ,tI . We have

~n-l -,

M(t) = u r n  ~ [X( 2—~j- t) - X (—~- t)]~
n j=l 2 2

2n-l +1
= A lim ~ [W(~— t) - W (— t)]~

n j = 1  2 2n

= A t  a.s.

. 1 
where the last equa l i ty  is a theorem of L~vy [Doob (1953)1. This implies

that A is 6
~
_measurable for all t > 0.

k 

_ _ _ _ _ _ _ _ _

b- - - - -~~i ~±~~~ E~~~~~-I 
_ _ _ _
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1 1

2 . TUE NON L I NEAR SPACE OF A SIP .

In this section we study the structure of the nonlinear space L,(X)

of a SI P ( O ,R;F) X , using the canonical representation of X in Theorem 1.4

and the wel l known properties of the non linear space of a GP. When X is

second order, the relation between the linear space H(X) and the non linear

space L
2(X) is shown in Theorem 2.4 and complete orthonormal sets (CONS’s)

in L,(X) are given in Theorems 2.2 and 2.3. When F has a moment generating

function , Theorem 2.5 shows that L2
(X) has the orthogonal decomposition

where 1I~ (X) is the p-th homogeneous chaos of X; and Theorem 2.6

shows the relation between H (X) and H(X) and gives CONS’s in each H (X).

Theorems 2.2 to 2.4 are based on the fol lowing property.

LEMMA ‘.1 Let 6~ and 8., be two independent a-fields on a probability

space (~ , 8, P) such tha t 8 is genera ted by and 82. Then

L2
(~ ,8,P) = L2

(Q , 81, P) ~ L2 (cl ,8,, P)

under the correspondence fg ---p f e g

Proof: We will write L2(8.) for L2(~u,
8 ,P ) .  Consider the mapp ing taking

f ~ g to fg for al l  f~L2(81), g cL ,(8,). From the independence of 8
1 
and 8,

it follows that fg L2(6) and

< ~ g 1, ~ ~ g2 > L 2(61)~ L
2~~2) 

= < f
1
g1, f2g2 

> 
L2~~)

Thus the mapping preserves inner products and it has a unique extension to

an i somorp hism between the closed subspace spanned by {f~g}, which is in fact

r l ,(6,), and the closed suhspace of L2(8) spanned by {fg}. The

assertion is proved if we show that N = tfg:fEL,(81 ) ,  g cL ,(5 ,) }  is a complete

set in L5 ( 8).
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Consider the family 8* of sets of the form u?(E~
1IF-
I), E c 81 and

F.E8
2
. Since 8~ and 87 are fields and they generate 8, it is readily seen

that 8* is a field generating B. We may even assum e , a f ter  a moment ’ s

reflection , that the sets E.nF., 1 ~ i � n , are disjoint. Now a standard

monotone class argument shows that the set {l
Un(E flF ) = 

~i
1E 1F }

is complete in L
2
(8). Thus N is complete. - 0

Let X {x
~~

i tE T}  be a second order nondegenerate SIP(O,R;F) and X = A~Y

its canonical representation of Theorem 1.4. Let f~~ ,ycP) (r linearly ordered)

• and {e ,  l�n~N} (N may be infinite) be CONS’s in 11(X) and L2 (dF) respectively.

THEOREM 2.2 If F(O~) = 0 then the family

a a1 1
(2.1) e (A) L ‘ )~ H (~~

l
)~ ~ )...H (~~~~~~) 2  

~ 
)

fl 
~~~ ~l 

‘
~
‘l ~k

e~ (A) • (
p1! . . . p k ! ) 2 (

~~
32 ~~~~~~~~~~~~~~~~~~~~~~~

where 1 � n � N, k � 1 , j
~1
+
~ ~~k 

= ~~ ~~~‘ 
< •~~~~• < lfl F, is a CONS in

L
2(X)

Proof: Assume F(O~) = 0. Then 8(A) and 8(Y) are independent a-f ie lds  generating
— 

8(X). By Lemma 2.1 we have

(2.2) L
2
(X) = L2(A) e L2(Y)

It is easily verified that A 2H (Y)  = H(X) and = Q-)~ ~~~~ is complete

in 11(Y). (Recall that Y is a GP.) Indeed {n~~~€F} is a CONS in H(Y) since

E - ~-i- ~~~~ = I ~~
-
~

- E
a~y~~

dF (a) E

(by Theorem L3). Now (2.2) and the celebrated theorem of Cameron and Martin

yield the result. 0

— . 
4~. 

. . ~~ - — _

— — . -.. 
-- 

. - -- - -- - -. ------ .- — -

~ 
-
~~~~~

- . -m~ ~~~~~~~~~~~~~~~ ~ 
—

~~~~~~~
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We remark that in dealing with a SLI’, the case F(0÷) = 0

(i.e. X cannot be zero with positive probability) is of main interest.

We now show how to obtain the counterpart of Theorem 2.2 when

0 < F(O÷} < 1 . Let 0
1 

= {wcQ A(w) = 0), 02 
{wc0: A (w)>O}, and

consider the restrictions of (c2,8(X),P) to 0~ and 0
2 
respectively,

(O
i Bo (X), P0 

) and (0
2~
8
0 

(X) ,P
0 

) .  Then

L2
(X) = L (O i,Bo (X),

P
0 

) e L (0
2~
8
0 
(X) ,P0 

)
1 1 2 2

It is easily seen that L
2(~~ ,8~~(X) ,P~~)~~ ifi

where IR is equiped with the usual inner product (<x ,y>~~= xy). Also P
0 

=

2
Q0 where Q is defined on 8(X) by Q(o) = 

‘(0 )
P I:o)dF(a). and thus

2

L
2(02,80 (X),P

0 )

under the correspondence (l-F(0+))~~ 10 
f - --p f. But under P , X is a

_~ _ 
2

SIP( 0,R;G) where G(a) = (1-F(O+)) 2(F(a)-F(0+)), and Theorem 2. 2 yields

+ 
the following CONS.

THEOREM 2.3 If 0 < F(O+) < 1 and if {e~~ 1�n�N} is a CONS in L
2
(d{F-F(O+)})

then the fatally

1 ½ i A
- 

- ~F( o+)~ {0}~ 
)~

-
~~~~~~ (2.3) p

~l- l (O+) 
I 

l
(0~~)

(A) e~ (A) 
~p 1! . . . pk ! A

~~~~~ l~
_

~~~~~~~~~ pk,~~~~~Y k

where 1 ~z n ~ N , k 1 , p
1-’- . . = ~ °

~ 
< in t’, is a CON S in

L
2

(X) .

— -  ~
—

~
4

— -

,

—- -
~~

---- -- - -_ -- -_-- -
~~~



14

Consider the corre spondence

e (A) ( 1 ) 2 (
I
) ~ A (~ ) . . . H A (~~ )

~~~~ ~~~ 1 ~k’u k
1 1

~~~
.. 

~‘

e (A) 
~PJ !...Pk

! (~~~
‘ 
~~~~~ 

k
)

when F(O+) = 0, and when 0 < F(0+) < 1 the correspondence

+ 
_ 1 ½

~ ~F(0+)~ 
1{0}

(A)~
(2.5) a

~1-F~o+)~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~
--
~~e~~~ (~ 

J~ - )
2

(~~ 
~~~~~~~~~~~~~~~~~ ) .

1”~ ~~~ 1 k

~ ~~l - ~Since 
~Pl

!..:p k
!
~ 

2 
~~ 1k 

~~. whe re k � 1, p1 + . 
~~~~ P~ 

= � 0,

. 4

< •~~~
< y~~ , form a CONS in H (X) , we have

THEOREM 2.4

L2
(X) = L2 (dF) s~ ( • H (X))

p �O

L~ (A) ~ ( ~ H (X)), if F (04-) = 0
p>0

tmp 
+L2 (X) = m~ 1L2(d(F-F(C+)) ~ ( ~ H (X) ) } ,if 0 F(0 ) < 1.

p�0

Suppose that every ~€H(X) has all moments finite. Let P(X) be the

linear sp ace of all polyn om ial s in element s of H (X )  and let P~ (X) (p�0)

be the linear space of all polynomials in p(X) of degree at most p; hence

P0(X) is the set of all constants. Let Q0
(X) = P

0
(X) and for p�l let

Q~ (X) be the se t of all po lynomials in P (x) orthogonal to P~~1 (X). Denote

E~-_~ :- ~~~~~~ .+ -~T~- --~~~~~~ - - - ------------—
~~~

- -
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by H (X) the closure of Q~(X) in L2
(X). Q~,(X) is called the p-tb

polynomial chaos and H~ (X) is called the p-th homogenous chaos.

When X is a SIP(O,R;F), in order to have all momen ts of ~el1 (X) finite
we introduce the following “moment” condition :

(M) The momen t genera ting fu nc tion of F ex is ts , i.e.

J 

ea~ dF(ct) < ~ for all t E R .

Under the condition (M) we have for 1€H(X ) (by (1.5)),

= J ~~~~ dF(a) = f a1~~
2E

1~~~
Pdp (a) = p

where a = 
f 

cz~dF(a) ,  p�0.

THEOREM 2.5 If (M) holds,

. 4 
L
2

(X) = ~ H (X).
p�0

Proof: it is well-known (see Neveu (1968)) that if e~~ LEL
2

(X) for every ~€H (X)

then L
2
(X) = H CX) (for arbitrary process X). Thus it suffices to show that

P�O
p

e 1
~~ is integrable if (N) holds. Since under each 

~a’ ~ 
is a zero mean Gauss ian

var iable wi th variance ~
2 

= ~~
— E~ , we have

E c~~~ = 
2 J~ 

e x~ (x2/2~~) ~~
a 

/~~~~q U

2e~~~~ r e 
-x
2/2~

2 
dx � 2e~~~

2

/~W a  -a
2

— ____- ..—-—- -—-1.• ~~
_-__ - ..

- - . -~~~ -- - +~~~~~~~-.,
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Thus, under (M),

—
~~
-- E~

2

Ee Rt = J E e  dF(a) � 2 
J 

c i dF(a)  <~~~ . 0

We now establish the relationship between the decomposition of Theorem 2.5

and the representation of Theorem 2.4. Assume the condition (N). Then

L2(X) = e H (X), and (An, O�n<°~) is a comple te se t of L
2

(A) . For each
p�O ~

Fixed q a 0, applying the Gram-Schmidt onthonormalization procedure, to fA
a)

with respect to the inner product <Am , A
n>

q 
- ~ ~m+n+q we obtain the set

(~~ (A) , O�n<cx,) which is complete in L
2(A) and orthonormal relative to

• Note that e~ (A) is a polynomial in A with degree n.

Now assume F(0+) = 0. By Theorem 2.4 we have L
2

(A) ~ ( ~ H~~ (X)) = L
2

(X) .
p�0

Denote this isomorphisin by ~~‘. Let

(2.6) It~~q(X) = ~{e~ (A) (~—)~~
2 ® H~~(X) }

It is not difficul t to see from (2.4) that

(2 .7 )  Fl~~q (X) c 

~2n+q~~~ “ 
1’2n+q-l~~~

since A € 
~2’ 

fr om the defin ition of A.

THEOREM 2.6 Under conditions (M) and F(04) = 0,

(2.8) H (X) = • H (X)
- + 2n+q=p 

,q

and a CON S in 11 (X) is given by

(2. 9) ( 
4 )

2 
~~(A) H 

~~~~~. 
(~ )...H 

~~~ 
)

q1
.. . .q~~ . n ~~1) ~~ •r 1 k c z1 ~

‘k

where 2n+q = p .  k 1, q1+ . . . fq~ q, .y < . .

~~~~1.. . 
?.

_________________ ____ 4 - -  -, -

- *. --‘ ~~~~~
. .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ---—-——--~—-——--—------- -1— . -
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Proof: First we show that H (X) i. H , ,(X) if (n ,q) ~ (n ’,q ’ ) .  It is
n,q n ,q

cl ear from (2. 6) that H (X) i. H , ,(X) if q ~ q’. Suppose now that
n,q n,q

q = q’ and n ~ n’. For 0, 0’ H~~(X) we have

E~ ~ (e~ (A) (~~)~~2 0) ~(e~ ,(A)(~~)~~2 ~ 0’)
i a1

= 
_ Efe~ (A )e~ , (A )A~ } <e~O > H~~(~) = 0

since ~~~~~~~~ > = 0 and thus H (X) .i. H (X) .
n n ’ q n,q n’q

In order to show (2.8) it suffices to show that P CX) = I-I (X)
2n+q�p n ,q 

+

because of (2.7) .  We need to show tha t ~~~~~ . ~~~~~ c • H~~q
(X) for al l

2n+q�p
cl’. 

~~‘~ k 
c H(X) and r

1
+. ..+r

k S p. For ease of expos ition we show this  for
r

~ only. Wriçe ~ = ~~~~~ € 11(Y) . Then

= Ar/2
~~ = A

r/2{H 
2~~~ 

+ Con st . H 
2~~~ 

+ Con st . H 
~~~~~r ,Eri r-2,E~ r-4,ETi

+ 
= H 

~~~~ 
+ Con st . A 

~ 2(€) + Const . A2H (~~)+ . . .r,AE~ r-2 ,AE~ r — 4 ,AEr i 2

+ m
Note that AmH 2~~ -~ ~ 

‘1 2 CX)  c • H (X) . Thus ~~~ € •
+ 

. r-2 m,AE~ n=O n,r- m 2n+q�r n ,q 2n+qsp

H~~~ (X) and (2.8) is proved.
-q

(2.9) follows from (2.4), (2.6), (2.8) and ~~~~~~~~~~~~~~~ . 0- (  1
+ Of course H

1
(X) = H(X) and , for ins tance H2 (X) = H

1 0
(X) e H

02 (X) where

H (X) = sp(A-a } and1,0 1

2

H~ 2
(X) = i~{ ( ~ T)½H A ( ~ )H A (~ ) : p1

+p
2 

= 2,11<12 
}

) ~~~~~~~~ ~1’a1 ~1 ~2’a1 ~2

— 

- - _p~ - - - 
- 

- 
- - ~r=~ ~.

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—---

~~
- 

~~~~
__ - 

— ---. — —------ -—
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3 . EQ (I 1 VAU:NCIi 1~Nl) SINGULAR ITY u1~ S I V ’ s

In  t h i s  section we combine the representation of SIP’ s (Theorem 1. 4) and

the dichotomy of GP’s to the problem of discriminating between two SIP’ s.

The discrimination prob lem is completely solved by identify ing the Lebesgue

decomposition of the distributions of the two processes and the Radon-Nikodym

derivative of the absolutely continuous part . Two processes are called equiv-

alent (—) , resp. singular (i), if their induced measures on B(IRT) are equiv-

alen t (—), resp . singular (i). The discriminat ion problem for two second order

SIP ’ s: SI P ( O ,m;F) and SIP(m ,S; G ) is f u l l y resolved by first noting that

without loss of generality we may assume that either GP(0,R) GP (m,S) or else

GP(0 ,aR) i GP( m ,~ S) for all a ,~ > 0. When GP(O ,R) GP (m ,S), the Lehesgue

decomposition of SIM(m ,S;G) w ith respect to SIM (0,R;F) is given in Theorem

3.1 and the Radon-Nikodym derivative of the absolutel y continuous part in

Theorem 3.4. In particular , if GP(0,R) — GP (m ,S), then dF dG implies

SIP( 0,R;F) — SIP( m ,S;G), and dF i dG implies SIP(0,R;F) i. SI P (m ,S;GL Theorem

3.2 shows that if CP(0,aR) i GP( m ,~ S) for all a > 0 then SIP(0,R ; F )  i SI P ( m ,S;G).

Finally, if dF dG then SIP( 0,R; F) and SIP( m ,R; C~) are either equivalent or

s ingular , and necessary and su f f i c i en t  condi t ions  for equivalence along with

an expression for the Radon-Nikod ym d e r i v a t i v e  are given in Theorem 3.5.

For reasons of clarity in this section we attach the underlying probability

measure to the usual notat ion for expectation , variance , l inear space , etc.

We first state the general theorem concerning the equivalence and the

si ngular ity of two GP’ s (see for instance Pang (1973)). Fix a > 0. Let

X = (x i . tcl) he a GP(0,aR) on the probability space (Q
~
B(X)

~
Pa)~ 

Let

he a second probabilit y on (0,8(X)) under which N is a GP(m ,aS). Then either

-

~

- ~~~~~~~~~~~~~~~~~~ ~ :.
‘ 

.--
~ 

_____  ____
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P Q or p £ Q . P Q if and only if the following condition s are
a a a a a a

sat i sfied :

(*) There exist positive constants K 1 
and K

2 
such that

K2 Var~ ~ Var
Q ~ ~ 

K1 Var y ~

for every ~cL(X) , the line:r space of all finit: linear combinations 
~~
anXt

t El’.n

(**) There exists 
~
€}l
~ 

(X) such that m(t) = E~ (F
~
Xt), 

tcT; i.e. meR(R),
a a

the reproduc ing kernel Hilbert space of the covariance R.

(***) I f  B : H~ (X) -

~ 

l1~ (X) is the positive self-adjoint operator 
defined

a a
by Coy (E~,r~) = Cov e (~ ,B~~) for all ~~, n€L(X) , then Bc~ 

- I is hubert -Schmidt .

Moreover if conditions ( * ),  ( * * )  and (***) hold true and ~f ~~~ 
and {~~}

denote the sets of eigenvalues and corresponding normalized eigenvectors of

+ ~~ then

(:.l ) = exp { B~~~
2
~ - ~~Var~~ (B ’2

~) - ~ ~~~~~ -1) + logA~)}

From now on X = (X~ , t€T) will he a second order nondegenerated SIP

(0,R;F ) on (0,8(X) ,P). Recall tha t R is a covariance function and F is a

distribution function on with finite first moment a1
. P is a mixture

of Gaussian measures , P(E) = fPa(E)dF( cz ) , and under each 
~a’ 

X i s a

GP( 0,aR). Let A he the r.v. associated with X and P as in Section 1.

Now consider a second probability measure Q on (0,8(X)) under which X

is a second order nondegenerate SIP (rn ,S:G). Then Q(E) = fQa
(E)dG (a) and

under each Q , X is a GP(m ,aS). Denote the first moment of G by a~ . We

are interested in the equivalence and mutua l singularity of the measures P

;ind Q. Sinc e P() i Q0 if m ~ 0, we shall assume throughout this section that

____________ _____E~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~
----

~~~~
- 

~~~~~~~~
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F(0-i-) = 0. Also we may assume without loss of generality that either P1 Q1

or i. for a l l  a,~ > 0, since clearl y

~ .2) a SIP (m,R;F(a)), is also a SIP (m,cR;F(ca)) for every c > 0

THEOREM 3.1 Let P1 Q1 
and let dG = dG ’ + dG” be the Lebesgue decom-

position of dG with respect to dF with  dG’ < <  dF and dG” i dF.  Then

Q(E )  = f o~ ( E ) d c ’( a) + JQ (E)dG” (a)

is the Lebesgue decomposition of  Q with respect to P. Hence if  P1 Q1 and

dF dG then P Q; if P 1 Q 1 and dF £ dG then P 1 Q.

Proof: Note that P1 
— Q1 imp l i e s  P 

~a for a l l  a > 0. Let P ( E )  = 0. Then

fPa(E)dF(a) = 0 and P (E) = 0 a.e. [dF] . Since P 
~a 

and dG ’ << dF , we have

= 0 a.e. [dG’], and thus fQa(E)dci’(ct) = 0. This implies fo~ (.)dF(a)<<P(.).

Since dG” i dF , there exists EE8 (1R) such that JEdG”(c*) = JE, 1F(a) = 0.

Note that A = a a.e. because A = a a.e. and -
~ Q~~

. Thus we have

P(AcE’) = fPa(ACE’)dF(a) = fE,~
F (a) = U

J~~(A€E)d G”(a) = (a) = 0 ,

which imply 
~~~~~~~~~~~ 

i P ( • )  . [1 
+

The second assertion of Theorem 3.1 was first stated in Gualtierotti

(1974) for P and Q SIM’ s on a separable Hu bert space.

THEOREM 3.2 If P 1 Q for all a,~ > 0 then P 1 Q.

Proof: The proof is adapted from Pang (1973).

The following remarks will be used without further comment . For

~,ri€L(X), we have

_i:- ~~~~~~~~~~~~~~~~~~~~~~ ,. - ----,. - 
. 

- ~~~~~~~ ~~~~~~~

-- --~~~~ .—- ~~~~ --  .- . -~~~~~~ —- -p-~~~~~~~
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E [) ~ = E~,F, = 0 , Coy 1, (~ ,n ) = ~~~ Cov~~(F~fl)
a a 1(3.  ~)

E
Q

F~ = E
Q~ 

Cov~~ (F~,fl) = 
a l~~~~

OV
Q
L
~~

fl)

I f  P 1 and Q1 satisfy (*) then for every sequence ~~~ 
in li i, (X) there exist

ver sions of ~~‘s such that is also a sequence in 11~ (X), ll~~(X). UQ
(X).

Ii~ (X) for a l l  a > 0, and satisfies (3.3). (The proof of this is similar to 
+

‘<a
that of Theorem 1.3).

Since P 1 1 Q1, one of the conditions ( *) ,  ( * * )  and (***) must be violated .

First suppose that (*) is not satisfied ; for instance , suppose that there

exists no constant K1 such that Var ~ ~ K Var ~~. Then there exists a
1 

~l 2sequence t~ } in L(X) such that Vary ~ = 1 and Var ~ > n . Then , as n ~n i n Q1
we have

> /n~ � —‘- -f 0

Q (I~~I > 
~~

) = f~
(
~~I > ~~)dG (a)

(an)~~~
’2 

-

� f ( i  - 1 -1/2 e dx )dG( a)
-(an)

÷ 1

wh ich imply  P 1 Q.

Next suppose (*) holds but (**) does not hold. Then , for each n , there

exi sts ~~€L (X) such that

EQ r~ > (n Va rQ~~)~~
2 

� (K 2n Var~~fl~~
2

(see Pang (1973)). Consequentl y, as n -
~

1 4cx
~
‘
~~~~fl 

> 
~ ~~~~ 

> -~-(K2n Var~~~~)
’12} ~ j~

—
~

- -* 0

Q(F > ~EQ fl � Q ( ~~~-EQ~~ I <

~ 
Q( R 1.) -E Q~~ I < -~

-(
~~ 

\/ar
Q~~
) )

> I - —
~
- -

~ 1n

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - -

‘
~~~~~~~~~ 

- 

- r~:i~’
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and thus p ~

I: i fl,~l l y suppose that (*) and (**) are satisfied , but (*~*) is not . We
may assume in this case that m 0. We claim that

there exists a sequence {~~} in H1, (X) such that Cov e ~~~~~
(3.4) = & .  and Cov

Q
(~ .,~~.) = 

~~~~~~~~~~~ 
where 

~
(1
~~n
)
2 

= and

— - t i  >O f o r a l l n o r < O f o r all nU n

Given t h i s , consider the events

E = ~ - 1) � 
~~ 

-

We sha l l  deal w i t h  the case - > 0 only.  Note that  K
2 ~ � K~ by (*)~

For cz > i w o  have

P ( E ) = P 1{~ a~
2 (_± -1) � -~-- ~(_! - u~)}

� ~~~~ n ’~~~~ 
-1)! � ~~~~~

K
8 (~J~) 2 —__J_____ 

-÷ 0K n 22

and for 6~~ 1

~ (~~ - U~J 1

-~ Q 1 (
~~ (

~~-~~
)(_ - 1 ) f  ~~~~~

_ 

~~ 
( 1-c )

1 1 1
I

8K
1 - ~~~~~~~~~~~~~~~~~~~~~~~ -* I

Thus I f  = limsup Em~ 
then = 0 for a � 1 and Q~~(E )  = 1 for ~ s 1. Thi s

imp lies by (3.2) that for all a ,h > 0 there exist E h (X )  such tha t

a

~

- ~,w+I;— i~E~~ ~~~~~~~~~~~~~ _ _ _
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P ( E
b
) = 0 for a � a and Q

B
(E

b
) 1 for 13 b. Hence , as a -÷ 0 and

b -
~~ ~~, we have

P(E
ab

) = J P ( E
b

)dF (a) � F( a) -
~ F ( 0 + )  = 0 ,

[0,aI

Q(Eab) � I Q13(E
b)dG(13) = G(b) ~~- 1,

[0,b]

and consequently p ~ Q.

To complete the proof, we now verify (3.4). Two cases are to be

considered. First , suppose that B1 
- I is compact but not Hilbert-Schmidt.

Let [A
n
) and 

~~~ 
be the ergenvalues and the corresponding normalized

ergenvectors of B1 
- I. We have A

n 
-÷ 0 , = and B1~ =

By choosing a suitable subsequence of {
%

} .  we obtain the des ired sequence

in (3.4). Second, suppose that B1 
- I is not compact . Being invertible

(by ( * )) ,  B
1 

is not compact and thus its essential spectrum is not [0}.

Furthermore , since B
1 

- I is not compact , there is at least one point

p ~ 1 in the essential spectrum of B1
, and thus also in the essential

numer ical range of B. (For a n ic~ discussion of essen tial spectrum and

essential numerical range see Fillmore et. al. (1972)). Now by a known

result in operator theory (Lemma 2 in Ander5on and Stampfli (1971) stated

for a separable Hu bert space but true for a nonseparable Hilbert space

as well), there exists an orthonormal sequence {n~
} inH~ (X) such that

1
Cov(q., Bn~ ) = and -3- U . Again (~~} in (3 .4)  is obtained by choosing

a suitable subsequence of {n~}. 0

Theorem 3.2 is not true in general , without the Gaussian assumption on

~cz and Q~
, since there are uncountably many measures involved . For example ,

is the uniform measure on [0,11 for each a, if Q~ 
is the one point

mass at 13 for each 13, and if dF dG P1, then P .i. Q
~ 

for all a and 13,

but P Q.

- 
‘- .~ 

~~~~~~~~-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~i . - 

~
-j=--—- -

,-. _.. .~~~~~~ ... - -. -,. - 
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Now suppose that P

1 Q1 
and let Q’(.) = JQ (•)dG ’(a) be the absolutely

continuous part of Q given in Theorem 3.1. We will calculate the Radon-

Nikodym derivative ~~~~~
— . Theorems 3.1 and 3.2, together with the expression

of ~~~~~
— , provide a complete solution to the problem of discriminating between

two SIP’s. To this end , we prepare the following

dQ
Lemma 3.3 Let = 

~~ a.s. [ P } .  If PA (w) (W) is a measurable function,

then

(w) = 
~A(w ) ~ 

(A(~ ))  a.s. [P] .

Proof: For every E € B(X) , we have

0A ~~~~~~~~ (A)dP = f {f  

~a 
~~~~~

_ (a)d p ) dF (a)

= fQa
(E)dG ’(C

~
) = Q’ (E)

as required. 0
Note that the measurability of P

A~~~
(w) is not automatic since each

~~a

can be arbitrarily changed on a set of P -measure zero.
a

Theorem 3.4 azppose P 1 Q1. Then

(1) there exists ~€H~ (X) such that m (t ) = 
~

-
~
_ E p (

~ X~ ) ,  t€T;

(ii) there exists a seif—adjoint positive operator B on I-I~ (X)

defined by

4 Cov Q (~~ n) = -
~~

- Cov~~(~~, Bri )

for all ~~~, ri€L(X), and such that B - I is Hilbert— Sthmidt.

Moreover if {A~ } and is the set of elgenvalues of B and their corresponding
1/I

eigenvectors with norms a
1 

—
, then

(3.5) = exp {1 B 112
~ 

L Var~ (B~~”2~)

- 
~~ 

[ -
~~~ 

(~~
-
~
- - 1)+logX~ ] }  • 

~J-~- 
(A)

~ 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~.:. T~:11;- ~~~~~~~~~~~~~~~~~~~~~ — 
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+ 

Proof: Let X = A 112Y be the canonical representation of X , where Y is a

GP(0,R) under P and under each P (a>0). It is clear that each ~ -li 1,(X)

1/2or l I
~ 

(X) has a version of the form A ri with n. 11 1,(Y). In this sense , we
a ill

have H~ (X)  = A ‘ I - I ( Y )  = H~ (X). Therefore every operator on 111)IX) induces

an operator on U~~(X) in an obvious way , 
and vice versa .

Since P~ -= Q1, there exists a ~~~~~ (x) such that m (t) = E~ (~
Xt),teT,1 1

and a seif-adjoint positive operator B
1 
on lip (X) def ined by Cov~ (~ ,q) =

1 ‘<1
Cove (~ ,B1~ ),~~,r~ L(X). A simple computation shows that ~ satisfies (i)

1
and that B, the opera tor on H~ (X) induced by B1, satisfies (ii).

By Lemma 3.3, (3.5) will follow if we show

(3.6) ~~a = exp {~ B~~
”2
~- ~~~~~~~ Var~, (B~~ ’2~)

a 1 2

- ~ ~~~~~~ 
(~i -l)+log X 1) a .s.

Let B
a 

be the operator on H~ (X) induced by B. Again , a simple computation

shows that satisfies condition ( * * ) ,  and that B satisfies condition

(***) and has eigenvalues {A }  and corresponding eigenvectors

Thus we have by (3 . 1)

dQ 1 — 1 / 2  1 _ 1/ I
a-v— = exp 

~a Ba 
- 

~~~ ~

‘

:~~
a
~~
a ~~

- 
~~

- 

~ [~~- (~~-l)+logX J ) a. S. [ P ]

which is equivalent to (3.6) since B~~
”2
~ = B ”2~ a.s. [

~a
1
~ 

0

- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -.~~~~~~~~ -• .. 4 - . , .  ‘. - - +- . - .~~~~~ .
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-

Theorem 3.5 Suppose R = S and dF — dG. Then either P Q or

P i Q , and P — Q i f  and only if

(3. 7) m ( t )  = E p (
~

Xt ) , tE T ,

f o r  some F~€H~ (X) . In the case of equivalence ,

(3.8) = exp {—4 (~~
-

~~
- Var~~) . ~~~~~

. (A)

Proof: Clearly if (3.7) holds we have P
1 Q1, and if (3.7) does not hold

we have P i Q~ 
for all ct,13. The first assertion follows then from

Theorems 3.1 and 3.2. (3.8) follows from Theorem 3.4 by comparing (3.7)

+ 
with (3.6) and noting that R = S implies B = I. U

Sytaya (1969) derived (3.8) for P and Q SIM’s on a separable 1-lilbert

space and F = G .

.t

~ 

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  

_ _ _ _ _
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4. NONLINEAR ESTIMATION ANt) PREDICTION

Using the tensor product structure of the nonlinear space we solve the

general nonl inear estimation problem for SIP ’ s, and in par ticul ar for GP ’ s,

in the sense that we reduce the nonlinear problem to a standard linear estima-

tion problem , the theory of which is well developed . Also we der ive a l ower

bound for the mean square error of the nonlinear prediction for a certain class

of prediction problems.

4.1 Nonlinear Estim ation

Let X = (Xt, tET) be a second order process with zero mean . Consider the

following estimation problem : we observe X~ for tES , a subset of 1, and we want

to estimate an L2-functional 0 of X based on the observations. We are interested

in finding the best estimate 0 , an L2-functional of (Xi, teS) which minimizes

the mean square error of estimation E(0-0)
2
, and it is well known that

e = E(0Ix
~
, tES)

• In general , 0 is extremely d if f icu l t to determ ine. However, if X is a SIP, we

have a complete solution . In formulating the main result we will use the notation

of Section 2, and identi fy L2 (X) w ith L2(A) ® (~~0H~~(X)) by Theorem 2.4. We

— le t L2(X;S )  = L,(Xt, t€S) and H(X;S) = H(X~
, t€S).

THEOREM 4.1 Let X be a nondegenerate SIP (0,R;F) with F(O+) = 0 and let

OEL2
(X) ha ve the following orthogonal development

+ 

~l”~~ k0 nay I~ 
en

(A) ® (~ ~~~~
.. .

~~~ ~~ 
)

n� 1 p1
+ . ..+p~~p l~ ” k 

‘
~l

~~~ Y1
< .

— ~11~~~ ------- - -- —- -- 
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Suppose that (X
~~

, tES) is nondegenerate. Then

-
~B = 

n
3y 

~
, en (A) 

~ 
(~ & .. e 

~ 
)

n�l p1
+ . 

~~~~~ 
~~

• • .  
k ~

‘
1

p>O y
1
< . .

where for E cH(X) ,

= Pro
~}J(X S)~ 

(=E(
~~

X
~
, tES))

Proof: Recall the definition of the r.v. A and observe that it is independent

of the cho ice of the defining sequence ~~~~~~~~ It then follows that A€ L ,(X;S)

and every pc L2 (X; S) ha s the orthogonal developmen t

.q.
p = 

m~o ...s~~m
(A) 

~ 
(fl~ ~~. s n~ )

q�0 q1
+.. .+q.=q 1 ~ 1 J

m?l 6 (...<c53
1 3

where {ri6, ócA) (~ linearly ordered) is a CONS in U(X;S).
We have

0 = E (0jX
~
, tcS) =

-
. p ...p 

~
p _ 

~~~~~+ - 

n
a ‘ k1~~0jL (X .S) efl (A) 0 (~ ~o. . .e ~ 

k)
~�O 

~~~~ ~
4
~k

=
~ 

1 k 2 ‘ “1• - n�0 y
1
<. . . <

~~~~

Thus to show the theorem it suffices to show that

Proj L ‘.~~~ 
e (A) 0 (1 ~o. . .o ~ 

k) = e (A) o (~ 
to.. .o ~ k

)2~ 
) n 

~l

+ If 
~~~~~~~~

. . . ~~~ H(X) and 
~~~~~~~~~~~~~~ ~n~EH(x;S) then it follows from <

~i ’~j >H ( x )  =

<
~i’~ j

>H( X) that

<
~
:i ~~~~~~~~~~~~~ ~ , fi ~ 

> = <
~ l ~~~~~~~~~~~~~ ~ ‘ 

~i 
& ... fl >+ p 

~~H
1’(X) P FI 1

~( X)
and hence for each pc L2(X; S) we have

______ — 4- , -+.... .p’
,- .

~ ~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~
—

~~.--- _~ ~~~~~~~~
—----- —-—--- — — — —
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— —
<e~ (A) ® 

1 
~~~~~~~ .® ~ k~ P>L ~X2’

~m
b 

~~:::~~~
e
n

A 0 ~~~~~~~~~~~~~ k), em
(A) 0 (n6:’ & ..~~~ ~o~~~

>
L2

(X)

= 

~m~~~::~~~ :;:~ 
~~~~~~~~~~~ 

0
~k em

(A) e (n~~ ~~~~

= <e (A) 0 (~ 
1 m . . .o ~ k) 

~
>L X2~ ~

;p _ ~~~~.jpSince e~ (A) ~ (F 1 
0. ..0 ~ k) c L2(X;S), the resul t fol low s . U

+ 

~
‘
1

A similar result can be obtained when F(O+) > 0. Of particular interest is

the case where X is in fact a Gaussian process. In this case we have A = I = a1,

L2(X); p~O 
H’~(X ), Q~ 

H~~(X); and Theorem 4.1 yields the follow ing.

~~ ROL~~ RY 4.2 Let X be a GP(O ,R) and let 0 ~ L2
(X ) have the following

or thogona l development

P1 . . .P J( ~~~~~ — 

~~k 
-

a ~
• p�O p1

+. •
~~k

=
~ 

y1.. •Y
J~ 

•l’i 1k
y

1
< . .

,1

Then

~~~~~~~~~~~~~~~~~~~~~~
~�0 

~~~~ ~~
1’k~~

’ 
‘~l~ ~~k 

‘
~‘l

• 11
< ..

where for ~ f 11(X),

Proi fl(XS)

~ 
(=E (

~~
X
~

, t S))

Consequently,

Proj~~, 
PrO I L ( X S) = ProiL.,(x;S) ProJ~- = ProJ~ - (5)

_ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -“- — - ---~~-~~~~~~~~~ -
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where Q~(S) denotes the p-th homogeneous chaos of (X
~~, 

t c S ) .

COROLLARY 4.3 If X is a nondegenerate SIP (O ,R;F)  and if fe
ta(IF(a) < ~~

for alit € ~P , then for all ~EH (X),

E(H (~)IX , tES) = H (~)
t

1 1

E(exp{F~ - ~~~~~
— EF~

2 }) x ~, t€S) = exp{~ - ~~~~~~
— E~

2}

In particular , if X is a GP( 0,R) and ~EH(X), then

E(H p E~ 2 ( ~ ) I X t~ 
tES) = H

p E~
2(
~
)

E ( exp {~ - ½E
~
2 ) J X

~
, tcS) = exp{F~ - ½E~~

2 }

If X is a zero mean Gaussian ruartingale then

+ 

- 

Hp EX 2 (X t )
~ 

exp [X
~ 

- ½EX~)

are martingales.

Proof: Only the first assertion requires proof and we shall prove it for

• 
-

+ 
the case F(0+) = 0 only. fe

tadF (a) < , t E IR, implies A~
”2c L2(A). Thus

~~c z 2
= H 

A ~~ (p!Y~(—.~) • —+ --~ H A (by ( 2 . 4 ) )
- . ~~~~~~ a

1 p.
a1 a

1
-

2 op —

- ~ 
= (p!) i(~~ ) 0 € L

2
(A) 0 FJ~~(X) c L2(X)

and by Theorem 4.1

‘ - A 2 
“~~~~‘0 = (p !)2(—) o = H (~)1 a 1

I
Now wri te

+ 
+

- 
I -IP.I~~ fr~ ~~~~~~~~~~~~ ~

‘-.-
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —
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0 2 = exp{~ - 
~~~~~

— E~~} = ~ A1 p�O ~~ p , —E~
2

I

the convergence of the series being pointwise. It follows from the expression

of 0 1 that all terms in the above sum are mutually orthogonal and each term

has square norm —a • 
( 2)P where a = fa~dF (a). Therefore the series con-

verges also in L2(X) and

02 ~ ~T 
E(H A 

(~) IX~~ tcS) = ~ 4 H Ap�0- P~ p,~—E~
2 p�O P.

1 1

0

For X a Wiener process it is well known that (X~ -t , t�0) and

(exp~X~ - -~-}, t�0) are martingales.

+ If X is a zero mean Gaussian process and T = (-~ ,~ ) (or any interval)

then by Corollary 4.3 we have that for all sst ,

E(F1 
2 (X

~ ) j X ~ , u�s) = H 
~2 ~~t ~P~

EXt p~EX~

• 1  where

X
~~S 

= E(X t jX
~
, u�s)

An expression for can always be obtained via the Cramêr-Hida representation

of

X
t 

= ~ f ~ f(n)
(~ ,U)dZ

(n).
n=l _cz, U

Then we have 
N

= 
~ I ~~~~~~~~~~~~

n=l -~
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+ The case with p = 2, i .e. the L2-functional X~ - EX~ , is considered in Hida and

Kall ianpur (1975) for a spec ial class of Gaussian processes X. It should be

clear that whenever a simple expression is available for ~~~~ then a simple

express ion is also found for the nonl inear predictor of H
p,EX

~
We close thi s section with a simple examp le. Let (X~ , _oo(t<0~) be a station- +

ary Gaussian process with Ex
~ 

= 0, Ex~ = 1, and continuous covariance R(t), wh ich

is reciprocal or quasi-Markov on [0,T]. Then it is known 113 , 5]

that R(t), Ost�T, has one of the follow ing three forms: Ae~~
t 

+ (l~A)eat where

a > 0, A > ½, 1 � (2a)~~ 1og (A/JA-1~ ); cos at where a > 0, T�ir/a ; 1-at where

O < a � 2/1. We want to estimate 0, an L2-functional of X~ , 0 � u < t <v � 1,

based on observations X , SES = [0,uju [v ,TJ . Since X is reciprocal or quasi-

Markov on [0,1] we have

• I 
= E(XtIX , s€S) = aX

~ 
+ 

~
Xv

where

a = R(u-t)-R(v-t)R(u-v) = 
R(v-t)-R(u-t)R (u-v)

- 
~~

+ l-R
2
(u-v) l-R 2(u-v)

Since 0 is an L
2-functional of X~ , it has the orthogonal development

0 = 
~ 
a
~
H
~

(X
~
). and thus the best estimate 0 of 0 is given by

O = a H 
“2~~t~ 

= a H 2 2 (aX + OX ) -

-; p�O ~ p~EX~ p�0 p,a +0 +2aOR(u-v) V

4.2 Nonlinear Predic tion

Cons ider the following prediction problem : Let X = (X
~
, t€T), T an interval ,

he a second order process and let Y = (Y
t 

= 0
t

(X
~
), t€T) with O~ a real function

_ _ _ _ _ _  +

T T  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~
- -~~~~-~~~-~~~ -~
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suc h that EY
~ 

0 and EY~ < ~ for all tcl. Suppose that on the basis of the

past values of Y up to time t we want to find the best prediction of the future

value Y~~~ , I > 0. Two predictors are of special interest: the optima l linear

predictor Y~(t~t) and the nonlinear predictor Y~~(t~t). The optimality is

in the sense of minimizing the mean square error within the class of all linear

and nonlinear predictors respectively. It is well known that

Y~~ (t ,t) = E(Y
~ 

IY , sst) , Y~ (t,T) = ProJH ( Y S )
Y
~+I

The correspond ing mean square predictor errors are denoted by

a
2
~ (t,r) = E[Yt+t

_Y
n~
(t
~
T)]

2 
, o~ (t ,T) = E[Yt+1

_Y
~,
(t,T)]

2

Now introduce a “super predictor” Y
5
(t,T) as the nonlinear predictor of

based on (X 5, s�t), i.e.

Y5(t,T) = E(Yt+11X 5, 
5�t)

and denote its mean square error by 0
2
(t ,T). It is clear that

(4.1) c12(t ,-r) < a2~ (t,-r) � cT~ (t ,T)

and thus provides a lower bound for the mean square errors of linear and

nonlinear prediction. If X is a SIP then can be obtained as in Sec tion

4.1 by solving an estimation problem . If, in addition, 0~ is one-to-one

for each t then the a-fields generated by X~ and 
~~~~ 

coincide. In this case

-

. 
Y~~(t,-r) = Yjt .r) = E(Y t+T IX , s�t) , and the nonlinear predictor can be

again obtained by solving an estimation problem .

In the important case where X = (X
~
, t EIR ) is a zero mean stationary

Gaussian process with covariance function R(t,s) = R(t-s) and O~ = 0 we can

calculate the lower bound 02(t,T) = 02 (1) as follows. Wri te

L~ T i~~~~* ~~~~~~~~~~~ -
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(4.2) 0(X~) = ~~
a
~
H
~~0

2(X
~
)

where ~2 = EX~ . Note that for all ~,flEH(X),

EHp E ~
2 (

~
)H p Efl 2 (n) = p! < 

~
°
~ ,n
°
~
> =

EHp E~ 2 (~
)H q E n 2 (fl) = 0 if p ~ q.

Thus we have
(4 .3) EY

t
Y
S 

= ~~ p !a~R~ (t~s) .

p�l

Let X(t,T) = E(Xt+T JX SJ s�t) be the optimal nonlinear predictor of X~÷1

(which is also the optimal linear predictor since X is Gaussian) ,and a~ (T)

be the mean square error. Then by Corollary 4.3,

(4 .4)  c5 (t ,1) = a H 
~2p�l ~ p,EX (t ,t)

and hence

• 02(1) = E(Y
~+T 

- Y
5(t ,tfl

2= EY~~1 
-

(4.5) ~ p~a
2a~~ - ~~ p!a~ [a2_ c,~ (T)] l’

p�1 ~ p�l

2 2p 2 2 p
= ~ p!a {a - [o -a~ (r ) ]  }
p�1

It is wel l known from the general theory of stationary processes (e.g.

Doob (1953) , Rozanov (1967)1 that o~ (r) can be obtained analytically (if not

+ 
- 

explici tly) through the Wiener-Paley factorization theorem if X is linearly

regular , i .e. n
~

H(X
~
, sst) = {o}. When X is mean square continuous and linearly

regular we now show that so is ‘f, and hence a~(T) can be obtained analytically.

Y is clearly stationary and its mean square continuity follows from the con-

tinuity of R and (4.3). The linear regularity of Y follows from the fact that

— 
.- -

~ ~~~~~~~~~~~~~~~~~~~~~~~~ —--
~~~~

--+---- — -— +—--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-— —.—---
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Ia Gaussian process is linearly regular if and on ly  i f its remote past is
trivial . Here we give a purely geometric proof of this property; for a proof
using Kolmogorov ’s zero-one law see Rosanov (1967) and Ibragimov and Linnik

(1971).

THEOREM 4.4 Let X = (X’, t € IR )  be a zero mean Gaussian process

8(X~ , s�t), t€ IR , and = Then X is linearly regular if and only
if 8 is trivial.

Proof: The “if” part is clear . For the “only if” part, note f irs t that the
triviality of 6~~ is equivalent to the condition

n
~
L2(x5, s�t) = {0J

For simpl icity we wr ite L
~ 

= L2(X , s�t) and Ht = H(X~ , s�t). Thus we need

to show that H ,~, = {o} implies L~~ = n
tL~ 

= {o}. So assume that H_~,, = (01
and let O€L . We will show that 0 = 0.

Fix a sequence (ta, n=l ,2,+. . .} decreasing to -
~~~~. The fam ily of subspaces

H
t has the property that H~ E H

~ 
for m < n and n

~
H
~ 

= (0 1. Thus it followsn m n nreadily (see e.g. Rozanov (1967), pp. 53, 56) that u r n  Proj
H ~ 

= 0 for a l l
tn

~eH(X), and hence

H = s Dt
i n=I n

where 0~ is the orthogonal complement of }-I~ in H
t , i.e., H

t = li
t D1~.n+1 n n n+l

In each D~ pick a CONS; then pool all these CONS ’s together to get a CONS
YEF} in H

~ 
Observe that

(4 .6) Proj
~ ~~ , 

= 0 or ~~~~,

n

Since BeL c L
~ 

, it has the orthogonal development

_ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _  - ~ - -

~~~~~~.

~~~~~~~~~~~~~~~~~~~~~~~ -~~~ --~-- -~~~~~- -—----- ~~~~~~~~~ _ _ _



-
+ 

36

~l
”
~~ k ~~1 —  

— °
~ka ~

P~
0 P1

k .- 
~~~~~ 

1... k 1 k
11

< .. 
~
‘k 

-
+

and by Corollary 4.2,

0 Proj1 B = a 1 (Proj~ ~ 
) o. - .o(Proj,, ~

t ~l tn n

wh ich together wi th (4 .6) yields

(4.7) E02 = ~ (a~~~~~~~)
2
Il (P roj ~ ) l 

~~~~~~~~~~ 
~ ) k

j~
2

1l”~~ k t ~
‘l t

n Ti

Now let n -
~~ ~ in (4.7). The limit can be taken inside the summation since

— °
~k 2each summand is bounded by ~~~~ o . . .o  

~ II ; and the limit of each

summand is zero because of (4.6). Consequently EQ2 = 0, i.e. 0 = 0, and the

theorem is proved . 0

Jaglom (1970) has considered the problem of comparing the performance of j
+ 

optimal linear and nonlinear predictors for polynomial functions of certain

stationary Markov processes. Donelson and Maltz (1972) studied this problem

in detail for polynomial functions of the Ornstein-Uhlenbeck process. The

inequality (4.1) plays a central role in such studies. As an example , let X

be the Ornstein-Uhlenbeck process, i.e. a zero mean Gaussian process with

covariance function R(t,s) = e~~t_5L and let Y be given by (4.2) . By the

?‘larkov property of X we have

X(t,r) = E(X
~+1~

X , s~t) = e
tX
~

Thus it follows from (4.4) and (4.5) that

Y5(t ,r) = ~ a~H -2r (e
~~

X
~

) = a e~~
TH (X

~
)

p�l p,e p�l

— - ———-—--———-
~~~~~~

--.-- . - 
- ,•

.
- 
.,

~
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= ~ p!a 2(l - e2PT)
2

p�l

This result , with 
~~~~ 

a polynomial function of X~ , has been obtained 
by Donelson

and Maltz using a different approach; they also compared a~ with o~ and found

that these two errors are frequently close to one another. Finally, we remark

that if = H (X
~
) then

= Y5(t,T) 
= e PTYt ‘

0
2

(1) -= 1 - e 2PT 
-

‘I.

I_I: - -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~:i~~~ -~~~~~~~~~~
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